3.2681 \(\int \frac{\sqrt{1-2 x}}{(2+3 x)^{7/2} \sqrt{3+5 x}} \, dx\)

Optimal. Leaf size=158 \[ -\frac{64}{245} \sqrt{33} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ),\frac{35}{33}\right )+\frac{6388 \sqrt{1-2 x} \sqrt{5 x+3}}{245 \sqrt{3 x+2}}+\frac{92 \sqrt{1-2 x} \sqrt{5 x+3}}{35 (3 x+2)^{3/2}}+\frac{2 \sqrt{1-2 x} \sqrt{5 x+3}}{5 (3 x+2)^{5/2}}-\frac{6388}{245} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right ) \]

[Out]

(2*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(5*(2 + 3*x)^(5/2)) + (92*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(35*(2 + 3*x)^(3/2)) +
(6388*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(245*Sqrt[2 + 3*x]) - (6388*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 -
2*x]], 35/33])/245 - (64*Sqrt[33]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/245

________________________________________________________________________________________

Rubi [A]  time = 0.0532224, antiderivative size = 158, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.179, Rules used = {99, 152, 158, 113, 119} \[ \frac{6388 \sqrt{1-2 x} \sqrt{5 x+3}}{245 \sqrt{3 x+2}}+\frac{92 \sqrt{1-2 x} \sqrt{5 x+3}}{35 (3 x+2)^{3/2}}+\frac{2 \sqrt{1-2 x} \sqrt{5 x+3}}{5 (3 x+2)^{5/2}}-\frac{64}{245} \sqrt{33} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )-\frac{6388}{245} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right ) \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 - 2*x]/((2 + 3*x)^(7/2)*Sqrt[3 + 5*x]),x]

[Out]

(2*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(5*(2 + 3*x)^(5/2)) + (92*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(35*(2 + 3*x)^(3/2)) +
(6388*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(245*Sqrt[2 + 3*x]) - (6388*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 -
2*x]], 35/33])/245 - (64*Sqrt[33]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/245

Rule 99

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[1/((m + 1)*(b*e - a*f)), Int[(a +
b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + p + 2)*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 158

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rule 113

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-((b*e
 - a*f)/d), 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-((b*c - a*d)/d), 2]], (f*(b*c - a*d))/(d*(b*e - a*f))])/b, x
] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-((b*c - a*d)/d),
 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-(d/(b*c - a*d)), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)
/b, 0])

Rule 119

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d
), 2]*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-(b/d), 2]*Sqrt[(b*c - a*d)/b])], (f*(b*c - a*d))/(d*(b*e - a*f))])/(
b*Sqrt[(b*e - a*f)/b]), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] &
& PosQ[-(b/d)] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-(d/b), 0]) &&  !(SimplerQ[c +
 d*x, a + b*x] && GtQ[(-(b*e) + a*f)/f, 0] && GtQ[-(f/b), 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[(-(d*e)
+ c*f)/f, 0] && GtQ[(-(b*e) + a*f)/f, 0] && (PosQ[-(f/d)] || PosQ[-(f/b)]))

Rubi steps

\begin{align*} \int \frac{\sqrt{1-2 x}}{(2+3 x)^{7/2} \sqrt{3+5 x}} \, dx &=\frac{2 \sqrt{1-2 x} \sqrt{3+5 x}}{5 (2+3 x)^{5/2}}-\frac{2}{5} \int \frac{-13+15 x}{\sqrt{1-2 x} (2+3 x)^{5/2} \sqrt{3+5 x}} \, dx\\ &=\frac{2 \sqrt{1-2 x} \sqrt{3+5 x}}{5 (2+3 x)^{5/2}}+\frac{92 \sqrt{1-2 x} \sqrt{3+5 x}}{35 (2+3 x)^{3/2}}-\frac{4}{105} \int \frac{-\frac{1137}{2}+345 x}{\sqrt{1-2 x} (2+3 x)^{3/2} \sqrt{3+5 x}} \, dx\\ &=\frac{2 \sqrt{1-2 x} \sqrt{3+5 x}}{5 (2+3 x)^{5/2}}+\frac{92 \sqrt{1-2 x} \sqrt{3+5 x}}{35 (2+3 x)^{3/2}}+\frac{6388 \sqrt{1-2 x} \sqrt{3+5 x}}{245 \sqrt{2+3 x}}-\frac{8}{735} \int \frac{-\frac{15165}{2}-\frac{23955 x}{2}}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx\\ &=\frac{2 \sqrt{1-2 x} \sqrt{3+5 x}}{5 (2+3 x)^{5/2}}+\frac{92 \sqrt{1-2 x} \sqrt{3+5 x}}{35 (2+3 x)^{3/2}}+\frac{6388 \sqrt{1-2 x} \sqrt{3+5 x}}{245 \sqrt{2+3 x}}+\frac{1056}{245} \int \frac{1}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx+\frac{6388}{245} \int \frac{\sqrt{3+5 x}}{\sqrt{1-2 x} \sqrt{2+3 x}} \, dx\\ &=\frac{2 \sqrt{1-2 x} \sqrt{3+5 x}}{5 (2+3 x)^{5/2}}+\frac{92 \sqrt{1-2 x} \sqrt{3+5 x}}{35 (2+3 x)^{3/2}}+\frac{6388 \sqrt{1-2 x} \sqrt{3+5 x}}{245 \sqrt{2+3 x}}-\frac{6388}{245} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )-\frac{64}{245} \sqrt{33} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )\\ \end{align*}

Mathematica [A]  time = 0.219889, size = 101, normalized size = 0.64 \[ \frac{4}{735} \left (\sqrt{2} \left (1597 E\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )|-\frac{33}{2}\right )-805 \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right ),-\frac{33}{2}\right )\right )+\frac{3 \sqrt{1-2 x} \sqrt{5 x+3} \left (28746 x^2+39294 x+13469\right )}{2 (3 x+2)^{5/2}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 - 2*x]/((2 + 3*x)^(7/2)*Sqrt[3 + 5*x]),x]

[Out]

(4*((3*Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(13469 + 39294*x + 28746*x^2))/(2*(2 + 3*x)^(5/2)) + Sqrt[2]*(1597*Elliptic
E[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2] - 805*EllipticF[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2])))/735

________________________________________________________________________________________

Maple [C]  time = 0.022, size = 314, normalized size = 2. \begin{align*}{\frac{2}{7350\,{x}^{2}+735\,x-2205} \left ( 14490\,\sqrt{2}{\it EllipticF} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ){x}^{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}-28746\,\sqrt{2}{\it EllipticE} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ){x}^{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}+19320\,\sqrt{2}{\it EllipticF} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) x\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}-38328\,\sqrt{2}{\it EllipticE} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) x\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}+6440\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticF} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) -12776\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticE} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) +862380\,{x}^{4}+1265058\,{x}^{3}+263238\,{x}^{2}-313239\,x-121221 \right ) \sqrt{3+5\,x}\sqrt{1-2\,x} \left ( 2+3\,x \right ) ^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(1/2)/(2+3*x)^(7/2)/(3+5*x)^(1/2),x)

[Out]

2/735*(14490*2^(1/2)*EllipticF(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))*x^2*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(
1/2)-28746*2^(1/2)*EllipticE(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))*x^2*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/
2)+19320*2^(1/2)*EllipticF(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))*x*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)-3
8328*2^(1/2)*EllipticE(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))*x*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)+6440*
2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticF(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))-12776*2^(1/2
)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticE(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))+862380*x^4+1265058
*x^3+263238*x^2-313239*x-121221)*(3+5*x)^(1/2)*(1-2*x)^(1/2)/(10*x^2+x-3)/(2+3*x)^(5/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-2 \, x + 1}}{\sqrt{5 \, x + 3}{\left (3 \, x + 2\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(1/2)/(2+3*x)^(7/2)/(3+5*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-2*x + 1)/(sqrt(5*x + 3)*(3*x + 2)^(7/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{5 \, x + 3} \sqrt{3 \, x + 2} \sqrt{-2 \, x + 1}}{405 \, x^{5} + 1323 \, x^{4} + 1728 \, x^{3} + 1128 \, x^{2} + 368 \, x + 48}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(1/2)/(2+3*x)^(7/2)/(3+5*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1)/(405*x^5 + 1323*x^4 + 1728*x^3 + 1128*x^2 + 368*x + 48), x
)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(1/2)/(2+3*x)**(7/2)/(3+5*x)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-2 \, x + 1}}{\sqrt{5 \, x + 3}{\left (3 \, x + 2\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(1/2)/(2+3*x)^(7/2)/(3+5*x)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-2*x + 1)/(sqrt(5*x + 3)*(3*x + 2)^(7/2)), x)